

Coupling of proteins to PureCube NHS-Activated Agarose using PureCube 1-step batch MidiPlus Columns

Overview

Equipment

☐ Spectrophotometer

This protocol delineates a coupling procedure for proteins to PureCube NHS-Activated Agarose. Proteins are coupled covalently and can be used for different applications, e.g. purification of interaction partners.

Amounts given in this protocol are for 2 mL of a 50% NHS-Activated Agarose suspension, which contains 1 mL agarose bed volume. Separation of Agarose and supernatants can be done by centrifugation, or, more conveniently, using PureCube 1-step batch Columns. They are available in different sizes to accommodate volumes from several hundred microliters to 2 mL bed volume. See the separate protocol available for a combination of these products. For larger scales, use of special equipment like glass vaccum tank filters, is recommended. See also the protocol "Coupling of proteins to PureCube NHS-Activated Agarose".

Please contact us if you have questions or need assistance optimizing a protocol for your application (contact@ www.cube-biotech.com); other protocols can also be found at www.cube-biotech/protocols.

· ·
Centrifuge for 50 mL tubes
50 mL centrifugation tubes (e.g. Falcon)
End-over-end mixer or thermomixer

М	ato	~ "	

PureCube NHS-Activated Agarose (10 mL, Cube Biotech #50303)
☐ PureCube 1-step batch MidiPlus Columns (Cube
Biotech #63203) Sodium dihydrogen phosphate
Sodium chloride
Sodium acetate trihydrate
Sodium hydroxide (NaOH)
Acetic acid
☐ Ethanol ☐ Ethanolamine

C_NHS_Ag__Midi_1510.3 1/3

Solutions and buffers

PBS Buffer, pH 7.2, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
NaH ₂ PO ₄ dihydrate	150 mM	156.01	n.a.	5.85 g
NaCl	100 mM	58.44	n.a.	1.463 g

Instructions: Dissolve components in 200 mL water, adjust the pH to 7.2 with NaOH. Add water to a total volume of 250 mL.

Quenching Buffer, pH 7.4, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
Ethanolamine	1 M	61.08	n.a.	15.27 g

Instructions: Dissolve component in 200 mL water, adjust the pH to 7.4 with HCl. Add water to a total volume of 250 mL.

Agarose Storage Buffer, pH 6.5, 250 mL

Component	Final concentration	Molecular weight (g/mol)	Stock concentration	Amount needed for buffer
Sodium acetate trihydrate	20 mM	136.08	n.a.	674 mg
Ethanol	20 % (v/v)		100 % (v/v)	51 mL

Instructions: Dissolve sodium acetate in 150 mL water, adjust the pH to 6.5 with acetic acid. Add 48 mL water and 51 mL ethanol to yield a total volume of 250 mL.

C_NHS_Ag_Midi_1510.3 2/3

Procedure

- Transfer 2 mL PureCube NHS-Activated Agarose suspension (corresponding to 1 mL bed volume) into the batch incubation chamber of the spin column barrel. Use the *clear* spin push cap to close the chamber and spin the resin at 400 x g for 5 min.
- 2. Empty the 50 mL centrifuge tube and place the spin column barrel containing the activated agarose matrix back into it.
- 3. Add 2.5 mL PBS to the agarose, close the chamber with the **clear** spin push cap and spin the resin at 400 x g for 5 min.
- 4. Empty the 50 mL centrifuge tube and place the spin column barrel containing the activated agarose matrix back into it.
- 5. Prepare a solution of 2.5 mL PBS containg the protein to be coupled to the agarose. The exact protein amount needs to be optimized, and 5 to 15 mg protein is a good starting point.
- Add the protein solution to the agarose, close with the **yellow** cap and mix by inverting 2-3 times.
- 7. Depending on the temperature stability of the protein, incubate at room temperature or 4°C for 2 h on an end-overend shaker or thermoshaker.
- 8. After batch incubation, replace the **yellow** cap with the **clear** spin push cap. Centrifuge at 400 x g for 5 min, or until the lysate has completely passed through. Collect the flow-through and analyze it in a spectrophotometer. Record absorption at 280 nm to monitor coupling efficiency.
- 9. Wash twice with 5 mL PBS, and four times with 5 mL double distilled water each.
- 10. Add 5 mL Quenching Buffer, close with the **yellow** cap and mix by inverting 2-3 times.
- 11. Incubate again for 1 h at room temperature or for 4 hours at 4°C.
- 12. Wash four times with 5 mL PBS each, and twice with 5 mL double distilled water each.
- 13. Resuspend the coupled Agarose from the spin column barrel in 2 mL Agarose Storage buffer, yielding a 50% suspension. Store at 4°C.

Important: Once PBS is added, work quickly to avoid hydrolysis of the NHS groups.

Tip: When coupling a particular protein for the first time, try 3-5 different protein concentrations to make sure you are offering enough protein in the reaction but not wasting any protein.

Tip: Monitoring absorbance at 280 nm tells you about the coupling efficiency of the protein (compare A280 of the original protein solution to the supernatant in step 6 to determine % coupling). It also helps you identify the optimal amount of protein required for efficient coupling.

Note: The quenching step ensures that no free NHS groups are left on the agarose matrix that might interfere with subsequent assays.

